Taking Back Our Stolen History
Big Bang Theory
Big Bang Theory

Big Bang Theory

(11) NOT ENOUGH TIME—Astronomers tell us that the diameter of the universe is over 20 billion light years. Evolutionists tell us that the Big Bang occurred 10 to 20 billion years ago, and stars were formed 5 billion years later. Evolutionary theorists only allow about 21/2 billion years from the time of the Big Bang till hydrogen and helium had spread throughout the universe, and another 21/2 billion years for it to clump together into stars! Their dating problem has been caused by the fairly recent discovery of supposedly faraway quasars (which we will discuss in greater detail later in this chapter).

Scientists now say that the distance from our world to the farthest-known quasars (those with a red-shift of 400 percent) are at least 15 billion light-years! That would make them at least 15 billion years old, which is too old to accommodate the theory.

We have no evidence that hydrogen or helium anywhere in the universe travels at the speed of light (186,000 miles per second). But even if it could, it would take 15 or 20 billion years for hydrogen and helium to reach the farthest part of the universe—or over a trillion years if it went at the speed that hydrogen gas is currently traveling outward from super-novas.

After reaching the edge of the universe (if there is an edge), it would then take a long, long time for the thinly spread-out hydrogen and helium fog to devise a way to lock together (if the gas had the brains to figure out such a pressing problem).

So there is just not enough time in the evolutionary timetable from the Big Bang till the universe was filled with stars. The Big Bang theorists are divided on when it occurred; some say 20 billion years ago, others 10 billion. We will here assume the longest timeframe: 20 billion years. But quasars have now been found which, by Big Bang-accommodating theories, are “15 billion years old.” This does not provide enough time for the gas to spread outward throughout the universe, form itself into stars, then wait while billions of supernovas repeatedly explode (to produce heavy elements [if they could do so]), reform into stars, explode more times, and finally form into our present orbiting stars, galaxies, clusters, and superclusters.

Before concluding this section, we will try to tack down the Big Bang dates. Generally, the Big Bang itself is supposed to have exploded 10 to 20 billion years ago, with the first formation of stars occurring 250 million years after the explosion. At some lengthy time after the gas coalesced into “first generation ” stars, most of them exploded, and then, 250 million years later, reformed into “second generation” stars. Our sun is thought to be at least a second generation star, having previously exploded at least once, and perhaps twice. Apparently, no one ever dates the Big Bang earlier than 20 billion years ago. Here are several representative statements:

“Big Bang: According to a widely accepted theory, the primeval moment, 15 to 20 billion years ago, when the universe began expanding from a single point.” —*Kirk D. Borne, et. al, Galaxies (1988), p. 134.

“Until 250 million years after the Big Bang, Gamow maintained, matter took the form of a thin gas, evenly spread throughout space . . Each cloud began to condense and break up into myriad stars .” —op. cit., pp. 113-114.

“What is the universe like? If it had a beginning, how did it begin? How did it evolve to make galaxies, stars, planets, and ultimately human beings? These are the sorts of questions astronomers are trying to answer as they aim their large telescopes toward the depths of outer space.

“In this century, they’ve developed a picture of the universe as having an explosive beginning, which they call the Big Bang. According to Big Bang cosmology our universe began around 10 billion years ago. Then came a time when the galaxies were made as matter collected into islands in space in which stars were born.” —*Star Date (radio broadcast), October 2, 1990.

“When did the big bang take place?. . A figure that is generally accepted as at least approximately correct is 15 billion years. If an eon is 1 billion years, then the big bang took place 15 eons ago, although it might just possibly have taken place as recently as 10 eons ago or as long as 20 eons ago. “—*Isaac Asimov, Asimov’s New Guide to Science (1984), p. 44.

(12) NO WAY TO PRODUCE ENOUGH OF THE HEAVIER ELEMENTS—We now know of 81 stable elements, 90 natural elements, and 105 total elements. It requires a sizable number of books to explain all that we have learned about their unusual properties and intricate orbits. Where did all those elements originate? It is theorized that explosions of large stars (super-novas) produced them. But, although it is thought that a small amount of heavier elements are made by high-thermal explosions within stars, yet (1) there is great uncertainty whether, aside from hydrogen and helium, such explosions could produce many light elements, much less those of the post-helium (“heavy”) elements, and (2) there is no evidence that such explosions could produce enough of the heavier elements to provide for all the post-helium elements in the universe, much less in our own planets. The Big Bang theory simply does not account for the abundance and variety of heavier elements.

Normally, because of the helium mass 4 gap, explosions of hydrogen can only produce helium. At first, Big Bang theorists maintained that that initial explosion produced all 90 elements. But later, recognizing the helium mass 4 gap, they admitted that even if the Big Bang explosion could make “something out of nothing,” that primeval explosion (the Big Bang itself) —and even explosions of small stars (novas) —could only produce hydrogen and helium. For this reason, they looked to explosions of very large stars—super-nova explosions—to change hydrogen into the heavier elements.

But then came more obstacles. Although it is thought that the intense heat inside a large star is such that a few heavier elements might actually be produced, this would not solve the theoretical problem for two reasons: (1) Only a super-nova explosion is thought powerful enough to produce the heavy elements, and there have been relatively few super-nova explosions. More on this later in this chapter. That is problem enough, but (2) even those scientists that believe that super-nova explosions could produce heavy elements admit that only a small amount of such elements could possibly be produced by an exploding super-nova, and that would not be sufficient to produce enough heavy elements. The quantity of post-helium elements in the universe is too great for them to have come from super-nova explosions.

(13) ELEMENTAL COMPOSITION OF PLANETS AND MOONS IS TOTALLY DIFFERENT THAN THAT FOUND IN STARS—Here on earth we find large quantities of the heavier elements. We have 90 natural elements; where did they come from? Each nuclear test explosion is thought to produce an extremely small amount of certain elements, but not enough quantity or variety is produced.

The lighter elements tend to be found in larger quantities in the stars (although heavier elements have been identified in them as well as in interstellar gas). Science cannot explain why our earth is composed of such heavy elements. If stars produced our world, why does our planet have such different elements than the stars have? A leading astronomer, Fred Hoyle explains that the problem is a major one that has evolutionists baffled:

“Apart from hydrogen and helium, all other elements are extremely rare, all over the universe. In the sun they [the heavier elements] amount to only about 1 percent of the total mass. . The contrast [of the sun’s light elements with the heavy ones found on earth] brings out two important points.

“First, we see that material torn from the sun would not be at all suitable for the formation of the planets as we know them. Its composition would be hopelessly wrong. And our second point in this contrast is that it is the sun that is normal and the earth that is the freak. The interstellar gas and most of the stars are composed of material like the sun, not like the earth. You must understand that, cosmically speaking, the room you are now sitting in is made of the wrong stuff. You yourself are a rarity. You are a cosmic collector’s piece.” —*Fred C. Hoyle, Harper’s Magazine, April 1951, p. 64.

(14) RANDOM EXPLOSIONS DO NOT PRODUCE INTRICATE ORBITS—Extremely complicated factors are involved just in maintaining the proper rotations and revolutions of galaxies, stars, and planets. How could haphazard explosions result In the marvelously intricate circlings that we find in the orbits of suns, stars, and galactic systems!

And, within each galaxy, millions to billions of stars are involved in those interrelated orbits!

“Galaxy: a system of stars, gas, and dust that contains from millions to hundreds of billions of. stars.” —*Kirk Borne, et. al., Galaxies (1988), p. 135.

The complex obedience to natural law that we find everywhere in the universe is astounding. Were these careful balancings not maintained, the planets would fall into the stars, and the stars would fall into their galactic centers—or they would all fly apart!

The careful balancing of gravity vs. centrifugal force that we now see throughout the universe in the orbits of the spheres is a continual marvel. All the stars and galaxies should separate or crash. But instead, they just keep going around in circles. —And we are to believe that all this started because something—pardon me—nothing exploded?

Random explosions never produce orbits! Shall I say that again? Random explosions never produce orbits. No type of explosion can produce the intricate, carefully balanced orbits of the stars, planets, and moons. The universe is filled with orbiting bodies. All available evidence indicates that every outer-space object in the universe orbits something else! Evolutionary theory cannot explain those orbiting bodies.

(15) WHY DID THE EXPLOSIONS STOP— When a star explodes, it is called a nova. When a large star explodes, it becomes extremely bright for a few weeks or months, and is called a “supernova.” The theory of the Big Bang includes the idea that billions of stars have exploded and most of them several times. But there is nothing in the theorized mechanism to start the process,—and there is nothing to stop it either.

According to the theory, it is the explosions of the very large stars that produced all the heavier elements. Such super-nova explosions are said to have occurred by the millions and billions for long ages of time. Why then did the explosions stop? They are said to have ceased exploding 5 billion years ago—and why? Frankly, for the convenience of the Big Bang theorists! As mentioned earlier, when the theory was first devised in the 1940s, the farthest star was said to be 5 billion light years distant, so it was decided that the super-novas stopped exploding 5 billion years ago! Is that scientific? Millions of stars were theoretically blowing their tops, but just before we could look out into space and see starlight from stars 5 billions light years away—the fireworks suddenly stopped.

If the theory be true, the explosions should be going on now. We should see over a thousand explosions nightly. (The theorists tell us our own sun has exploded and reformed three times!) Large numbers of gigantic super-nova explosions should be occurring right now on an immense scale, for there are multitudes of stars out there and super-nova explosions are obvious when they occur. Some become as bright as our own planets; some become brighter.

It is a cardinal requirement of evolutionary theory (uniformitarianism, it is called) that whatever happened earlier in time is happening today. That is a strict point of evolutionary theory, everything that happened earlier is happening today, and conversely, everything happening today is the way things happened earlier. According to evolutionary theory, the same quantity of explosions should be occurring now as before. Yet with the naked eye we never see such happenings, and through their telescopes few astronomers have ever seen a supernova that has even recently exploded.

“A supernova explodes in an average galaxy only once every 100 years or so.” —*Reader’s Digest Book of Facts (1987), p. 394.

At the present time, the farthest known objects are said to benot 5 billionbut 15 billion light years distant, which would eliminate the time needed for all or most supernova explosions to produce elements. Research astronomers tell us that about one supernova explosion is seen every century, and only 14 have exploded in our galaxy in the past 2,000 years. If the explosions occurred in the past, they should be occurring now.

(16) TOO FEW SUPERNOVAS AND TOO LITTLE MATTER FROM THEM— As mentioned earlier, in addition to occurring very infrequently, supernovas do not throw off enough matter, to make additional stars, and the smaller stellar explosions (novas) cast off an extremely small amount of matter. Yet, according to the Big Bang theory, the only source for all the heavy elements in the universe had to be super-nova explosions.

A small star explosion, or nova, only loses a hundred-thousandth of its matter; a supernova explosion loses about 10 percent, yet even that amount is not sufficient to produce all the heavier elements found in the planets, interstellar gas, and stars.

“In a typical novas explosion, the star loses only about a hundred-thousandth part of its matter. The matter it throws off is a shell of glowing gases that expands outward into space . .

“A supernova throws off as much as 10 percent of its matter when it explodes. Supernovae and novae differ so much in the percentage of matter thrown off that scientists believe the two probably develop differently. A supernova may increase in brightness as much as a billion times in a few days. Astronomers believe that about 14 supernova explosions have taken place in the Milky Way during the past 2,000 years. The Crab Nebula, a huge cloud of dust and gas in the Milky Way, is the remains of a supernova seen in A.D. 1054. Super-novae are also rare in other galaxies.” —*World Book Encyclopedia (1971), p. N-431.

Early in the morning of February 24, 1987, such an explosion was observed simultaneously by three astronomers, working in Chile, New Zealand, and Australia. It occurred in the Veil Nebula within the Large Magellanic Cloud. This was the first bright, close supernova seen since A.D. 1604, when the German astronomer Johannes Kepler spied one in the constellation Ophiuchus! So few super-novas have occurred, that we know the dates of many of them. The Chinese observed one in A.D. 185, and another in 1006 which was 200 times as bright as Venus and one tenth as bright as the moon! In 1054 a phenomenally bright one appeared in the constellation Taurus. It produced what we today call the Crab nebula, and was visible in broad daylight for weeks. Both the Chinese and Japanese recorded its position accurately. In1572, another extremely bright one occurred in Cassiopeia. Tycho Brahe, in Europe, wrote a book about it. The next bright one was seen in 1604, and Johannes Kepler wrote a book about that one. The next bright one occurred in 1918 in Aquila, and was nearly as bright as Sirius—the brightest star next to our sun. Some have been found in other galaxies, but they are equally rare events. (A bright one occurred in the Andromeda galaxy in 1918.)

So supernovasGamow’s fuel source for nearly all the elements in the universeoccur far too infrequently to produce the heavier elements of the universe.

(17) “TOO PERFECT” AN EXPLOSION—On many points, the theoretical mathematical calculations needed to turn a Big Bang into our present world cannot be worked out; in others they are too exacting, “too perfect,” according to knowledgeable scientists. Mathematical limitations would have to be met which would be next to impossible to achieve. The limits for success are simply too narrow.

The theorists have tried to figure out some possible way in which a primeval explosion could have accomplished everything they need it to accomplish. Most aspects of their theory are impossible, and some require parameters which would require miracles to fulfill. One example of this is the expansion of the original fireball from the Big Bang, which they place precisely within the narrowest of limits:

“If the fireball had expanded only .1 percent faster, the present rate of expansion would have been 3 x 109 times as great. Had the initial expansion rate been .1 percent less and the Universe would have expanded to only 3 x 10-s of its present radius before collapsing. At this maximum radius the density of ordinary matter would have been 10-t 2 gm/crn3, over 1016 times as great as the present mass density. No stars could have formed in such a Universe, for it would not have existed long enough to form stars.” —*R.H. Dicke, Gravitation and the Universe (1969), p. 62.

(18) NOT A UNIVERSE BUT A HOLE—*Roger L. St. Peter in 1974, developed a complicated mathematical equation which revealed that the theorized Big Bang could not have exploded outward into hydrogen and helium (which supposedly later formed itself into stars and galaxies). In reality, according to St. Peter, such an explosion would have fallen back upon itself and formed a theoretical black hole. This would mean that one imaginary object would have been swallowed by another one.

“The alleged big bang would never have led to an expanding universe at all; rather it would all have collapsed into a black hole.” —Creation Research Society Quarterly, December 1982, p. 198 [referring to *St. Peter’s calculation].

(19) NON-REVERSING, NON-CIRCLING— The outward-flowing gas from the initial explosion would just keep moving outward forever through frictionless, gravitationless space. But, in order to produce the stars and galaxies which today exist, that gas would have had to pause, change directions, circle, clump, and do a number of other exotic things. It would have had to change direction of travel several times.

A vacuum is not subject to gravity, but this vacuum was different: it supposedly was drawn inward to a common center, then changed into outward, moving gas, which then veered away from straight-line motioninto circles! Then the gas made itself into all the stars of the heavens! Imagine firing a shotgun with billions and billions of pellets out into frictionless space, Out it goes, then it stops, while some of the pellets travel backwards into the area they came from, and congregate into groups and then, of all things, begin circling one another! And these circling groups then begin revolving around still other distant groups, and continue doing so forever. Would shotgun pellets fired in outer space do that? Why then should we expect that floating gas would do it?

From the above illustration, it is obvious that an explosion in outer space would produce neither stars, galaxies, planets, nor complicated orbiting systems. Following an initial explosion, all the material having shot outward, would just keep moving outward forever. In space, there would be no friction to stop it.

(20) MISSING MASS— Mathematical astronomers tell us there is not enough mass in the universe to meet the demands of the various theories of origin of matter and stars. The total mean density of matter in the universe is about 100 times less than the amount required by the Big Bang theory.

The universe has a low mean density. To put it another way, there is not enough matter in the universe. This “missing mass” problem is a major hurdle, not only to the Big Bang enthusiasts, but also to the “expanding universe” theorists. Observations of stars, clusters, and galaxies indicates there is only about one-third of the mass required to close the universe (that is, eventually halt its theoretical expansion). (More on the “expanding universe” theory, another corollary needed by the Big Bang enthusiasts, in the next chapter.)

” ‘Most attempts to fit a cosmological model to observations have in fact implied that the total mean density of matter in the universe is much greater (maybe 100 times) than the mean density of luminous matter.’ McCrae says that whether or not the universe contains this ‘missing mass’ is ‘perhaps the most important unsolved problem of all present day astronomy.’ “—*W H. McCrea, quoted in H. R. Morris, W. W. Boardman, and R. F. Koontz, Science and Creation (1971), p. 89.

“Creationists (for example Slusher) have shown that there is insufficient mass for galaxies to hold gravitationally together over billions of years. Evolutionary astronomers have sought to explain away this difficulty by postulating some hidden sources of mass, but such rationalizations are failures. Rizzo wrote:

” ‘Another mystery concerns the problem of the invisible missing mass in clusters in galaxies. The author evaluates explanations based on black holes, neutrinos, and inaccurate measurements and concludes that this remains one of the most intriguing mysteries in astronomy.’ [*P.V. Rizzo, “Review of Mysteries of the Universe, ” in Sky and Telescope, August 1982, p. 150.]

“The obvious solution is that there really is no hidden mass, galaxies cannot hold together for billions of years, and galaxies have not been in existence long enough to fly apart.” —Creation Research Society Quarterly, December 1984, p. 125.

*Hoyle says that, without enough mass in the universe, it would not have been possible for gas to change into stars.

“Attempts to explain both the expansion of the universe and the condensation of galaxies must be largely contradictory so long as gravitation is the only force field under consideration. For if the expansive kinetic energy of matter is adequate to give universal expansion against the gravitational field, it is adequate to prevent local condensation under gravity, and vice versa. That is why, essentially, the formation of galaxies is passed over with little comment in most systems of cosmology.” —*F. Hoyle and *T. Gold, quoted in *D.B. Larson, Universe in Motion (1984). p. 8.

Source: http://evolutionfacts.com/Ev-V1/1evlch01a.htm

(Cont. – Problems 21-45): Origin of Matter Part 2; Origin of Matter Part 3; Origin of Matter Part 4

https://www.youtube.com/watch?v=q_UlYEyoVnM

Chronological History of Events Related to the Big Bang:

No posts found.